Localized Functional Principal Component Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localized Functional Principal Component Analysis.

We propose localized functional principal component analysis (LFPCA), looking for orthogonal basis functions with localized support regions that explain most of the variability of a random process. The LFPCA is formulated as a convex optimization problem through a novel Deflated Fantope Localization method and is implemented through an efficient algorithm to obtain the global optimum. We prove ...

متن کامل

Multilevel Functional Principal Component Analysis.

The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilev...

متن کامل

Local functional principal component analysis

Covariance operators of random functions are crucial tools to study the way random elements concentrate over their support. The principal component analysis of a random function X is well-known from a theoretical viewpoint and extensively used in practical situations. In this work we focus on local covariance operators. They provide some pieces of information about the distribution of X around ...

متن کامل

Structured functional principal component analysis.

Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure o...

متن کامل

Parametric functional principal component analysis.

Functional principal component analysis (FPCA) is a popular approach in functional data analysis to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). Most existing FPCA approaches use a set of flexible basis functions such as B-spline basis to represent the FPCs, and control the smoothness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2015

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2015.1016225